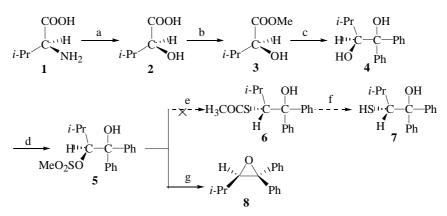
Synthesis of a New β-Mercaptoalcohol

Jian Feng GE^{1,2}, Li Fen ZHANG¹, Zong Xuan SHEN¹, Ya Wen ZHANG^{1*}

¹Department of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215006 ²Department of Material and Engineering, Suzhou University, Suzhou 215006


Abstract: In this letter, (R)-1,1-diphenyl-2-mercapto-3-methyl-1-butanol was synthesized from L-valine and two synthetic routes have been tried.

Keywords: (R)-1,1-Diphenyl-2-mercapto-3-methyl-1-butanol, asymmetric synthesis, L-valine.

Mercaptoalcohols are a rare class of natural products. Some optically active mercaptoalcohols have been used as catalysts in asymmetric reduction of prochiral Ketone^{1,2}. In this letter, we report the synthesis of a new optically active β -mercaptoalcohols, (R)-1,1-diphenyl-2-mercapto-3-methyl-1-butanol **7**, from L- valine.

Our first attempt is showed in **Scheme 1**. According to literature's method L-valine was converted to (S)-2-Hydroxy-3-methylbutanoic acid $2^{1,2}$. **2** was treated with MeOH/SOCl₂ to obtain (S) -2-hydroxy-3-methylbutanoic acid methyl ester **3**, which was treated with excess of phenyl magnesium bromide to give (S)-1, 1-diphenyl-3-methyl-1, 2-butanediol 4^1 . Then **4** was mesylated to obtain **5**.

Scheme 1

Reagents: a. NaNO₂/H₂SO₄; b. MeOH/SOCl₂; c. PhMgBr/Et₂O; d. MsCl/pyridine; e. KSCOCH₃/DMF(fail); f. NH₃/H₂O(untried); g. HSCOCH₃/pyridine reflux

Unfortunately, conversion of 5 to 6 was unsuccessful. When 5 was refluxed with thioacetic acid in pyridine¹, instead of compound 6, an optical active epoxy 8 was obtained¹, probably due to the steric hindrance around the reaction center.

Scheme 2

$$3 \xrightarrow{h} \stackrel{\text{COOMe}}{\underset{i-\Pr}{\stackrel{|}{\rightarrow}} 0\text{SO}_2\text{Me}} \xrightarrow{\text{COOMe}} \stackrel{i}{\underset{i-\Pr}{\stackrel{|}{\rightarrow}} 0\text{SOCH}_3 \xrightarrow{j} 7$$

Reagents: h. MsCl/pyridine; i. KSCOCH₃ / DMF; j. PhMgBr/Et₂O

A successful synthetic route is showed in **Scheme 2**. **3** was mesylated to obtain (S)-3-methyl-2-(methylsulfonyloxy)butanoic acid methyl ester **9**, which was treated with KSCOCH₃ in DMF to give **10**. Treating **10** with phenyl magnesium bromide gave the desired compound (R)-1,1-diphenyl-2-mercapto-3-methyl-1-butanol **7**¹. Synthesis of others β -mercapto-alcohols is on going.

References and notes

- 1. J. C. Fiaud, F. Maze, H. B. Kagan, Tetrahedron: Asymmetry, 1998, 9, 3647.
- 2. T. K. Yang, D. S. Li, Tetrahedron: Asymmetry, 1999, 10, 405.
- 2. H. O. Kim, R. K. Olsen, O.S. Choi, J. Org. Chem., 1987, 52, 4531.
- 3. W. R. Li, W. R. Ening, B. D. Harris, M. M. Joullie, J. Am. Chem. Soc., 1990, 112, 7659.
- 4. J. P. Vigneron, M. Dhaenens, A. Horeau, Tetrahedron, 1977, 33, 507.
- 5. F. Effenberger, S. Gaupp, Tetrahedron: Asymmetry, 1999, 10, 1765.
- Selected data of 8: White solid, mp 95~96°C, yield: 28% based on 5. [α]²⁰_D =+94.3 (CHCl₃, c=0.55). Calce. for C₁₇H₁₈O: C, 85.67, H, 7.61; found C, 85.79, H, 7.58. IR (ν, KBr): 1671 (C₆H₅), 1241 (C-O-C) cm⁻¹. ¹H-NMR (δ_H, CDCl₃): 0.75 (d, 3H, J=6.8, CH₃), 1.01 (d, 3H, J=6.4, CH₃), 2.55~2.64 (m, 1H, (CH₃)₂CH), 4.21 (d, 1H, J=10.4, CH), 7.20~8.00 (m, 10H,
- 2×C₆H₅).
 7. Selected data of 7: Slight yellow solid, mp 78–80°C, yield: 20% based on 10. [α]²⁵_D = +135.0 (C₆H₆, c=0.78). Calce. for C₁₇H₂₀OS: C, 74.96, H, 7.40; found C, 75.05, H, 7.46. IR (ν, KBr): 3482(OH), 2576 (SH), 1598, 1485,1477 (C₆H₅) cm⁻¹. ¹H-NMR (δ_H, CDCl₃): 0.97 (d, 3H, J=6.8, CH₃), 1.03 (d, 3H, J=6.8, CH₃), 1.11 (d, 1H, J=4.8, SH), 1.84~1.96 (m, 1H, (CH₃)₂CH), 3.45 (2, 1H, OH), 4.14 (dd, 1H, CHCHSH), 7.26~7.58 (m, 10H, 2×C₆H₅).

Received 22 December, 2000